The physics of filopodial protrusion.

نویسندگان

  • A Mogilner
  • B Rubinstein
چکیده

Filopodium, a spike-like actin protrusion at the leading edge of migrating cells, functions as a sensor of the local environment and has a mechanical role in protrusion. We use modeling to examine mechanics and spatial-temporal dynamics of filopodia. We find that >10 actin filaments have to be bundled to overcome the membrane resistance and that the filopodial length is limited by buckling for 10-30 filaments and by G-actin diffusion for >30 filaments. There is an optimal number of bundled filaments, approximately 30, at which the filopodial length can reach a few microns. The model explains characteristic interfilopodial distance of a few microns as a balance of initiation, lateral drift, and merging of the filopodia. The theory suggests that F-actin barbed ends have to be focused and protected from capping (the capping rate has to decrease one order of magnitude) once every hundred seconds per micron of the leading edge to initiate the observed number of filopodia. The model generates testable predictions about how filopodial length, rate of growth, and interfilopodial distance should depend on the number of bundled filaments, membrane resistance, lamellipodial protrusion rate, and G-actin diffusion coefficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev110437 4395..4405

UNC-6/Netrin is a conserved axon guidance cue that canmediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40–UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopo...

متن کامل

The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP

UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40-UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filop...

متن کامل

UNC-6/netrin and its receptors UNC-5 and UNC-40/DCC modulate growth cone protrusion in vivo in C. elegans.

The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/...

متن کامل

Modeling the evolution of cells outgrowth due to the force exerted by actins

Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...

متن کامل

Induction of Filopodia by Direct Local Elevation of Intracellular Calcium Ion Concentration

In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2005